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Abstract

The modelling of the ultraviolet contributions to the quark determinant in
lattice QCD in terms of a small number of Wilson loops is examined. Com-
plete Dirac spectra are obtained for sizeable ensembles of SU(3) gauge fields at
β = 5.7 on 64, 84 and 104 lattices allowing for the first time a detailed study
of the volume dependence of the effective loop action generating the quark de-
terminant. The connection to the hopping parameter expansion is examined
in the heavy quark limit. We compare the efficiency and accuracy of various
methods - specifically, Lanczos versus stochastic approaches- for extracting the
quark determinant on an ensemble of configurations.

1

http://arXiv.org/abs/hep-lat/9902015v1


1 Introduction

In a recent paper [1] we introduced a method for performing an unquenched Monte

Carlo simulation in lattice QCD in which the infrared and ultraviolet modes of the

quark fields are treated separately. The low eigenvalues (typically up to a cutoff

somewhat above ΛQCD) are exactly and explicitly calculated and included as a trun-

cated quark determinant in the the update Boltzmann measure The remaining UV

modes are included approximately by modelling the high end of the spectrum with

an effective loop action involving only small Wilson loops. It was found that on small

lattices (specifically, 64 lattices at β=5.7) the accuracy of such a loop fit to the high

end of the determinant was remarkably good- the χ2 per degree of freedom of a fit

with loops of up to 6 links to the logarithm of the quark determinant, including all

modes above 340 MeV was 0.23, while the typical excursion of the log determinant

between uncorrelated configurations was on the order of 20. Of course, one expects

that the accuracy of such a fit will decrease with increasing volume, and it is not

clear that this approach will remain practical once lattices of physically useful size

are reached. As an illustration, we note that recent studies of electromagnetic effects

in lattice QCD [2] found that the finite volume effects from even the long-range elec-

tromagnetic effects were controllable on 123x24 lattices at β=5.9. A 103x20 lattice

at β=5.7 has almost twice the physical volume, while the lattice discretization effects

can presumably be substantially reduced by using clover improvement. Our aim in

this paper is therefore to study the accuracy of effective loop action representations

to infrared truncated quark determinants for various size lattices at β=5.7. We shall

show that reasonably accurate representations of the UV contribution to the quark

determinant in terms of a small number of Wilson loops are indeed possible on such

physically useful lattices. To the extent that a small residual error in the loop repre-

sentation of the ultraviolet part of the quark determinant contributes primarily to an

overall rescaling of dimensional quantities such as ground-state hadron masses (which
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are dominated by quarks with a limited range of offshellness) such a representation

should be perfectly adequate for dynamical spectrum calculations on moderately sized

lattices.

Past studies of loop representations of the quark determinant [3, 4] (which typi-

cally focussed on the complete determinant, less accurately described by small loops)

have been hampered by the difficulty of obtaining exact values for the quark determi-

nant for a sufficiently large sample of independent gauge configurations. Stochastic

methods [5, 6] can be applied to fairly large lattices but with limited accuracy, whereas

the direct Lanczos approach [7] loses steam for lattices larger than about 124. In this

paper we have employed the Lanczos approach to obtain complete exact Wilson-Dirac

spectra for sizeable ensembles of 64, 84 and 104 lattices, allowing us to study in detail

the volume dependence (Section 2) and quark mass dependence (Section 3) of the ef-

fective loop action fit to the truncated quark determinant at various infrared cutoffs.

Technical details of the calculations, as well as a comparison of the computational

burden of the exact Lanczos and stochastic approaches, are presented in Section 4.

2 Loop Actions for light quarks- volume depen-

dence

The main difficulty we encounter in determining the accuracy of a loop representation

for full or truncated quark determinants in lattice QCD lies in the computational effort

required to extract complete spectra of the Wilson-Dirac operator for a sufficiently

large sample of independent gauge configurations on lattices large enough to yield

physically useful information. A variety of numerical tools, both exact and statistical,

now exist for accomplishing this task. Technical details of the implementaion of these

methods will be deferred to Section 4. In this section we present a detailed study

of the volume and IR-cutoff dependence of loop fits to the quark determinant for

ensembles of 75 64 lattices, 75 84 lattices and 30 104 lattices at β =5.7 and κ =0.1685.
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For all of these configurations we have carried out a complete spectral resolution using

the Lanczos methods discussed in Section 4, and identifying for each configuration

all 15552 (resp. 49152, 120000) eigenvalues in the 64 (resp. 84, 104) cases. Most of

these calculations were performed on a 9 node Beowulf system running Linux.

The configurations used in this study were generated using the truncated determi-

nant algorithm of [1]. In particular, the update measure included the contributions to

the quark determinant from low eigenmodes of the hermitian Wilson-Dirac operator

γ5(DW − m) up to a cutoff ΛQCD (specifically, we chose a cutoff of 0.45 in lattice

units, corresponding to about 490 MeV in physical units). This cutoff corresponds to

the lowest 30 (15 positive and 15 negative) eigenvalues for the 64 lattices, and to 120

(resp. 350) low eigenvalues for the 84 (resp. 104) lattices. It is reasonable to expect

that, by including this infrared contribution in the simulation measure the low energy

chiral structure is properly treated [1]. The essence of the task being addressed in

this paper is then to determine the extent to which the remaining omitted ultraviolet

modes can accurately be fit by a gauge-invariant loop expansion involving relatively

few and simple loops. The loop actions discussed here will include only loops (or

Polyakov lines) with up to 6 links, although the inclusion of loops with 8 links is com-

pletely straightforward in principle and would of course give a substantial increase in

the accuracy of the fit.

On a 64 lattice with periodic boundary conditions, there are five independent

gauge invariant contributions to D=lndet(γ5(DW − m)) involving 6 links or less,

corresponding to the plaquette (1x1 loop), here denoted L1(U), the length 6 Polyakov

line traversing the full length of the lattice in any direction, L2(U), and 3 independent

length 6 closed curves (denoted L3,4,5(U)), illustrated in Fig.1. In the case of the 84

and 104 lattices there are only four such terms- the plaquette and the length 6 simply

connected loops displayed in Fig. 1. In addition the fits contain a constant term

which can be regarded as the lattice equivalent of the unit operator. We shall be
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L3 L4 L5
Figure 1: 6 link closed loop contributions to D

studying the ultraviolet contribution to D in which the nλ lowest modes are omitted:

D(nλ) ≡
∑

i>nλ

ln (|λi|) (1)

where λi are the gauge-invariant eigenvalues of (γ5(DW −m)) enumerated in order of

increasing absolute value. Denoting the approximate loop value of D by Sa and the

true value by St, the variance per degree of freedom of the fit, σ2, is defined as:

σ2 =
n=nc∑

n=1

(Sa(n) − St(n))2/(nc − np). (2)

for nc configurations and np loop variables (including the constant term). (We note

here that the terminology ”variance per degree of freedom” replaces the usual ”chi-

squared per degree of freedom” as we are dealing with a dimensionless quantity with-

out statistical errors.) In Figures (2-4) we show the accuracy of the best fit to D(nλ),

for the cutoff corresponding to the actual simulation values - namely nλ =30 (resp.

120, 350 for the 64 (resp. 84, 104) lattices. The σ2 is 0.24, 0.28 and 0.79 for the 3 cases

studied . The very close matching of the loop action to the determinant values for

σ2 <1 suggests that accurate dynamical calculations should be possible by replacing

the UV part of the quark determinant by such a loop Ansatz.

The accuracy of the loop fit to a truncated determinant is increased either by

including longer loops or by raising the IR cutoff (which requires that more low
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Figure 2: 6 link fit to D30, 64 lattices
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Figure 4: 6 link fit to D350, 104 lattices

eigenmodes be computed explicitly and included in the simulation). The variation

with cutoff for the three different lattices studied is illustrated in Figure 5. The

eigenvalue cutoff has been reexpressed as a physical lattice momentum, with the

conversion performed using an average spectral density obtained by averaging the

individual spectra for all lattices in the ensembles used. Loops up to length 6, together

with Polyakov lines stretching across the lattice, have been included in the fit of the

determinant. The generic behavior is clear from Fig(5). The accuracy of the fit

improves rapidly with increasing cutoff (initially, the variance decreases roughly like

e−Cpmin , where pmin = |λnλ
| is the eigenvalue cutoff), reaching a small nonzero value.

For the lattices studied,the minimum attained σ2 was less than one in all cases, leading

to the close matching of actual and loop fit determinant values visible in Figures 2-4.

The σ2 then fluctuates more or less randomly for further increases of cutoff around

this value. This small nonzero contribution at fixed β (increasing with the lattice

volume) is due to higher dimension operators not included in the limited size loops

in the fit and would presumably be reduced as the lattice β is increased to push

the system towards the continuum. The fluctuations are simply a reflection of the
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Figure 5: σ2 versus pmin(lat) for 64,84 and 104 lattices

limited statistics of our relatively small ensembles- they become more visible at larger

cutoff where the signal to background is reduced. This can also be seen by plotting

the cutoff dependence of the σ2 for the 6 link loop fits for the ensemble of 75 84

lattices broken into three subensembles of 25 configurations each (Fig 6). At smaller

cutoffs, strong infrared correlations extending over several lattices lead to fairly large

differences in the σ2 of the fits for small pmin, while at larger values of the cutoff, the

size of fluctuations in each subensemble is comparable to the difference between the

σ2 for the different subensembles, suggesting that these fluctuations are statistical in

origin.

The accuracy of a simple loop representation for the ultraviolet part of the quark

determinant, involving the contribution of a relatively small number of Wilson loop

operators, depends on the fact that only a few independent gauge-invariant operators

exist of mass dimension 4 or 6 [8]. On the other hand, the number of topologically

distinguishable Wilson loops grows much more rapidly (in fact, exponentially) with

the length of the loops. This results in very strong correlations between the values

of distinct Wilson loop shapes over ensembles of independent lattices. For example,
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Figure 6: σ2 versus pmin(lat) for 3 ensembles of 25 84 lattices

the single plaquette value is strongly correlated with the value of the 2x1 loop (L3

in Figure 1). Thus, although the minimum σ2 attainable for any given cutoff in link

number is clearly only obtained by employing all Wilson loops up to the prescribed

length, the actual coefficients of the individual loop values Li exhibit large variations

from one subensemble to another for a given lattice volume, and also as the lattice

volume is increased. On the other hand, if only truly independent operators are in-

cluded, we should expect the coefficents (properly normalized for the overall lattice

volume) to remain relatively constant as the lattice volume is increased at fixed β,

reflecting the contribution of a definite set of low-dimension operators with expecta-

tion values approaching well-defined values in the infinite volume limit. This can be

seen in Table 1, where we show the loop coefficients as a function of lattice volume

for just the single plaquette operator obtained by minimizing the σ2 with respect to a

fit containing just a constant term (the unit operator) and the single plaquette loops

(in operator terms, F 2

µν). The 104 lattice results were not included because of the

limited statistics available in this case (only 30 lattices as compared to 75 lattices for

the 64 and 84 cases).

9



Cutoff (1/a) Volume N4 coefficients
ΛQCD N constant plaquette
0.00 6 -0.0225 0.0772

8 -0.0209 0.0794
0.45 6 -0.0111 0.0695

8 -0.0118 0.0699
0.56 6 -0.0043 0.0653

8 -0.0048 0.0653

Table 1: Variation with volume of fit coefficients of link expansion of tr ln (Det) for various
low eigenvalue cutoffs Λ.

3 Quark determinant for heavy quarks- hopping

expansion vs effective loop actions

The main physical difference between the behavior of the quark determinants for light

and heavy quarks lies in the relative variance of the infrared and ultraviolet contri-

butions. For light quarks, there are important fluctuations introduced both by the

infrared modes, which incorporate the proper chiral behavior of the unquenched the-

ory, and by the ultraviolet modes above ΛQCD, which primarily renormalize the scale

of the theory. Indeed, the latter are quantitatively dominant, but closely matched by

an effective action involving only plaquettes or 6-link loops which for long distance

physics reduces to an effective shift in the beta of the simulation. For heavy quarks,

the density of the quark Dirac spectrum is much reduced in the infrared (which is

cut off by the large bare quark mass), as are the fluctuations from the infrared modes

below ΛQCD, while the UV modes still have substantial variance, but again of a form

which, as we shall show, can be accurately modeled by a simple loop action. The

relative variance of the low and high end contributions of the (log) quark determinant

is shown in Fig 7, where the IR/UV cut is placed at the 15 th (positive or negative)

mode, roughly at ΛQCD for a 64 lattice at β=5.7 (for the sake of visibility, an irrele-

vant constant vertical offset has been applied to bring the various contributions close

to zero). For the heavier quark, κ =0.1500, there is comparatively little variance in
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Figure 7: IR and UV contributions to quark determinants for light vs heavy quarks

the IR contributions, but large fluctuations in the UR part.

The simplest approach one might take for the full quark determinant for heavy

quarks employs the well-studied [9] hopping parameter expansion for D=ln (γ5(DW − m)),

valid in the limit of small κ, i.e. large quark mass. In this section we examine the

extent to which a truncated hopping parameter expansion can compete with the non-

perturbative fitting of an effective loop action of the kind described in the preceding

section. On a 64 lattice with periodic boundary conditions, we saw previously that

there are five independent gauge invariant contributions to D of order κ6 or less, de-

noted Li, 1 ≤ i ≤ 5 above. The loop averages Li(U) on a given gauge configuration

{U} are normalized to give exactly one on the ordered configuration where all links

are unity. Then a straightforward combinatoric exercise gives (V = lattice volume)

D(U) = V (288κ4L1(U) − 512κ6L2(U) + 2304κ6L3(U) (3)

+ 4608κ6L4(U) + 1536κ6L5(U) + O(κ8))

(Note that this computation gives an approximant to the full determinant, with no

obvious way of implementing an IR/UV cutoff within the hopping parameter expan-
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Figure 8: Full determinant, hopping parameter vs nonperturbative fit

sion.)

Unfortunately, the coefficients of higher order terms in the hopping parameter

expansion grow fairly rapidly (the number of closed loops increases exponentially

with the length of the loop) and the expansion converges slowly. For example, for

κ=0.15, (with κ8=2.6x10−7 !) the average D over an ensemble of 30 configurations

gives 172.4, while the hopping expansion gives 147.8. The discrepancy is nevertheless

mainly due to a few low dimension operators which dominate the contribution of the

longer loops, as is apparent from Fig 8. The hopping parameter expansion through

6th order tracks roughly the exact determinants apart from an offset (the identity

operator). Of course, the nonperturbative fit including L1−5(U) does much better (the

σ2 is 0.112). We can improve the agreement of the truncated hopping expansion with

the data by varying both the offset and the single plaquette component from the value

of the κ4 coefficient given in Eq (2). This amounts to including at least the lowest

nontrivial dimension operator (dimension 4) arising from the longer loops (length 8

and higher). This fit is shown in Fig 9, in comparison with the unmodified hopping

expansion result shifted only by a constant offset. The fit is certainly improved

12



5 10 15 20 25 30

configuration #

166

168

170

172

174

176
Ln

 D
et

 (
al

l e
ig

en
va

lu
es

)

Computed determinant
Hopping expansion (fitting offset only)
Hopping expansion (fitting offset and plaquette)

Figure 9: Hopping expansion fits, with offset vs with offset+plaquette

by optimizing the single plaquette component (the σ2 is now 0.75) but clearly the

nonperturbative fit of Fig. 8, in which all closed loops through length 6 are optimized,

still wins by a substantial factor. We can conclude that even for quite heavy quarks,

the hopping parameter expansion, though analytically available, is not competitive

with a nonperturbative fit using even a small number of Wilson loops. Determining

the coefficients in such a fit only requires the extraction of the determinant for a

few typical configurations. We find that a sufficiently accurate determination of the

loop coefficients can be obtained by calculating the spectrum on as few as 10 gauge

configurations.

We pointed out earlier that the IR portion of the Dirac spectrum is relatively inert

in the case of heavy quarks. One therefore expects that a nonperturbative fit with a

few small loops should be accurate for heavy quarks, even if one insists on fitting the

full determinant, as discussed above. Indeed, we saw above that the σ2 with a fit to

the full determinant is 0.112 including loops up to length 6. The fit is still improved
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by excising the IR part of the spectrum, though not as dramatically as in the case

of light quarks where the IR fluctuations require the inclusion of large loops. For

κ=0.15, one finds for example that the σ2 of a 5 loop fit decreases to 0.035, 0.026 and

0.019 when the lowest 30, 60 or 90 modes are excluded from the determinant.

4 Extracting the complete Dirac spectrum- explicit

versus stochastic approaches

A fairly efficient method for performing a complete spectral resolution of the hermitian

Wilson-Dirac operator was described some time ago by Kalkreuther [7]. One employs

the usual Lanczos procedure, without reorthogonalization, pruning out the spurious

eigenvalues by the Cullum-Willoughby procedure [10]. Typically the extraction of

the complete Dirac spectrum requires (due to the inexact arithmetic) more Lanczos

sweeps than the actual dimension (12V , where V is the lattice volume), by a factor of

2-3. For example, on a 104 lattice, the full spectrum is obtained after about 320000

Lanczos sweeps, as compared to the actual dimension of 120000. The convergence of

the procedure is improved by starting from gauge-fixed configurations. (In spite of the

fact that the spectrum is gauge-invariant, it appears that the presence of gauge noise

can reduce the numerical stability of the Lanczos procedure.) Occasionally, spectral

fluctuations lead to two eigenvalues which are almost degenerate, or a real eigenvalue

almost degenerate with a spurious one, and the spectrum is found to be missing a

small number of eigenvalues (note that the Lanczos procedure does not identify the

degeneracy of the various eigenvalues). In an ensemble of 75 64 lattices, the procedure

missed a single mode in only two cases. For an ensemble of 20 104 lattices, 3 eigenval-

ues were missed 5 times, 2 for 5 configurations, 1 for 6 configurations, and complete

spectra were obtained for 4 configurations. Although the procedure can probably be

tuned to reduce the frequency of missed eigenvalues, the general trend is nevertheless

towards troublesome accidental degeneracies for larger lattices. Recently, we have
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found that the problem on larger lattices can be considerably ameliorated by a more

careful retuning of the algorithm for identifying spurious eigenvalues- the resulting

complete spectra agree completely with the reconstructed eigenvalues discussed be-

low. Moreover, the convergence of the eigenvalues in the densest part of the spectrum

occurs very rapidly as one reaches the end of the procedure, so that the spectrum

of the tridiagonal matrix essentially consists of either spurious eigenvalues (easily

identified by the Cullum-Willoughby procedure) or accurate converged eigenvalues.

For example, with 320000 Lanczos sweeps on a 104 lattice (120000 eigenvalues) one

finds with a carefully tuned Lanczos calculation exactly 200000 spurious eigenvalues

and 120000 converged eigenvalues, with the latter satisfying the set of exact sumrules

discussed below to high accuracy (for a 103x20 lattice with 240000 eigenvalues, com-

plete spectra are obtained with 600000 Lanczos sweeps). The present tuning leaves

about 3 orders of magnitude between the tolerance test for spurious eigenvalues (set

at 10−11) and the arithmetic precision (about 10−14,15). For larger lattices where the

volume and hence the maximum spectral density is a few orders of magnitude higher,

we expect the Cullum-Willoughby procedure to misidentify some true eigenvalues as

spurious, leading to incomplete spectra (as we indeed find if the tolerance parameter

for spurious eigenvalues is set to 10−10, for example).

In fact, in all cases mentioned above, incomplete spectra can be completely re-

paired with the aid of exact sum rules for traces of powers of the Wilson-Dirac matrix

H = γ5(DW −m). As we lose at most 3 eigenvalues, the lowest four sum rules suffice

to determine all missing eigenvalues, with a spare relation left over for checking the

accuracy of the reconstruction. One easily derives

Tr(H) = 0 (4)

Tr(H2) = 12V (1 + 16κ2) (5)

Tr(H3) = 0 (6)

Tr(H4) = 12V (1 + 64κ2 + (448 − 96 < P >)κ4) (7)
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where the Wilson-Dirac operator DW − m in H is normalized to be of the form

1 + κ(link terms), and < P > in Eq(7) is the average plaquette value in the given

configuration. A check of these sum rules on configurations where the entire spectrum

has been successfully extracted gives Tr(H, H3) <10−7 while the quadratic and quartic

sum rules are reproduced to at least eight significant figures. Repairing the incomplete

spectra with these sum rules reveals, as expected, that the missing eigenvalues are

either close to degenerate with each other or with a converged eigenvalue from the

Lanczos procedure.

An alternative to the explicit spectral resolution of H , which is only really feasible

for small to moderate sized lattices, is the stochastic approach developed by Golub

and coworkers [5, 6], and applied by Irving and Sexton in their study [4] of loop actions

for the quark determinant. Their formalism uses the close connection between the

Lanczos recursion and Gaussian integration to generate rigorous lower and upper

bounds to the diagonal matrix element < v|f(A)|v > of any differentiable function

f(A) of a positive definite matrix A. The spectral sum giving this matrix element is

transformed to a Riemann-Stieltjes integral and the usual quadrature rules (Gauss,

Gauss-Radau, Gauss-Lobatto, etc.) applied to this integral can then be reexpressed

in terms of a Lanczos recursion (for further details, we refer the reader to the paper

of Bai, Fahey and Golub [6]). The use of alternative quadrature rules (in which

information about the upper and lower limits of the spectrum is included in the

Gaussian measure) does not seem to matter much in the application to the Wilson-

Dirac matrix, although we have found that the Gauss-Lobatto version requires about

50% more Lanczos sweeps to achieve the same precision as the other quadrature rules.

It is straightforward to generalize the arguments of [6] to show that the Lanczos

estimates converge to the correct answer even for non-positive definite hermitian

matrices (such as the hermitian Wilson-Dirac operator H), although the strict upper

and lower bounds provided by the formalism no longer hold in the case f(A) = ln(A),
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as they depend on positivity of the derivatives of f(A) over the entire spectrum. The

rate of convergence of this procedure is impressive- for an 84 lattice the estimate of

< v| ln |H||v > for a generic random vector v with only 300 Lanczos sweeps is accurate

to 7 places on a 84 lattice, and to about 5 places on a 123x24 lattice.

The Gaussian/Lanczos approach described above immediately leads to a stochas-

tic method for estimating ln det(|H|) =
∑

i < vi| ln |H||vi >, where the sum extends

over a complete orthonormal basis. Namely, one computes an average over a set of

random vectors |zi > where each vector has components ±1 chosen at random:

ln det(|H|) = E(< z| ln |H||z >) (8)

var(< z| ln |H||z >) = 2
∑

i6=j

| ln |H|ij |2 (9)

We have checked that the choice of elements ±1 for the components of the random

vectors is optimal, in the sense that the variance (8) obtained with this choice can-

not be further reduced by an alternative choice of random variable. This procedure

therefore gives an unbiased estimator for the full quark determinant, with errors that

are purely statistical, decreasing as 1/
√

N with the number N of random vectors

used. Evidently the accuracy achieved for a given amount of computational effort

is directly determined by the size of the offdiagonal matrix elements of ln |H|. This

is of course a very complicated functional of the gauge field for a general configura-

tion. For the ordered configuration, however, H can be explicitly diagonalized, and

a straightforward computation yields

var(< z| ln |H||z >) = 4V { 1

V

∑

k

ln (A(k)2 + Bµ(k)Bµ(k))
2

− (
1

V

∑

k

ln (A(k)2 + Bµ(k)Bµ(k)))2} (10)

where A(k) = 1 − 2κ
∑

µ cos (kµ), Bµ(k) = 2κ sin (kµ), and V is the lattice volume.

In other words, the variance of the estimates (8) is exactly equal to the variance in

the logarithm of the free quark lattice offshellness (as A(k)2 + Bµ(k)Bµ(k) is just the

lattice version of kµkµ +m2 in the continuum). For not too heavy quarks (it is easy to
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see that the variance (9) vanishes with κ) the number multiplying the lattice volume

V in (9) is of order unity, so the optimal stochastic procedure requires N ≃
√

V to

determine ln det(|H|) to within an additive error of order unity, assuming the free

quark case as a rough guide. Explicit calculations show that the order of magnitude

of the variance is indeed as given in (9). For example, the free quark formula (9) gives

about 8x103 for the variance on an 84 lattice (choosing κ=0.12), while an actual run

with 1000 random vectors on a nontrivial 84 configuration (β=5.7, κ=0.1685) gives

a variance of 9.7x103, and a final result for the mean (log) determinant is 1224.0±

3.1 (the error is obtained by taking the square root of the variance per data point).

This should be compared with the exact value obtained from the complete spectral

resolution carried out by the direct Lanczos approach described in the first part of

this section, which was 1222.148. On a 123x24 lattice at β=5.9, κ =0.1597, a typical

configuration gave a variance of 8.0x104, compared with 7.2x104 from the free quark

result (9) (again using κ=0.12 for the free case). An explicit evaluation with 820

random vectors gave a final result 8682± 9.9 for the (log) determinant in this case.

We are now in a position to compare the computational efficiency of the direct and

stochastic methods described above. The stochastic approach yields an estimate of the

logarithmic determinant accurate to any fixed preassigned error with a computational

effort growing like V 3/2, while the full Lanczos spectral resolution, which effectively

determines the determinant to machine precision (actually, about eight significant

figures), requires an effort of order V 2. However, the prefactors in each case render

the Lanczos approach advantageous for small to moderate (say, 124) lattices. For

example, on an 84 lattice, the complete spectral resolution requires on the order

of 130000 applications of the “dslash” (lattice covariant quark derivative) operator,

while the stochastic method would require about 10000 random vectors, each with

200 Lanczos sweeps- i.e a total of 2 million dslash operations- to reduce the error

on the determinant to order unity (four significant figures). On the other hand,
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as discussed previously, on large lattices the direct Lanczos procedure is likely to

fail as the machine precision will be inadequate to resolve the increasing number of

accidental degeneracies due to the high spectral density. In this case the stochastic

approach may be the only option for estimating the complete quark determinant.
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